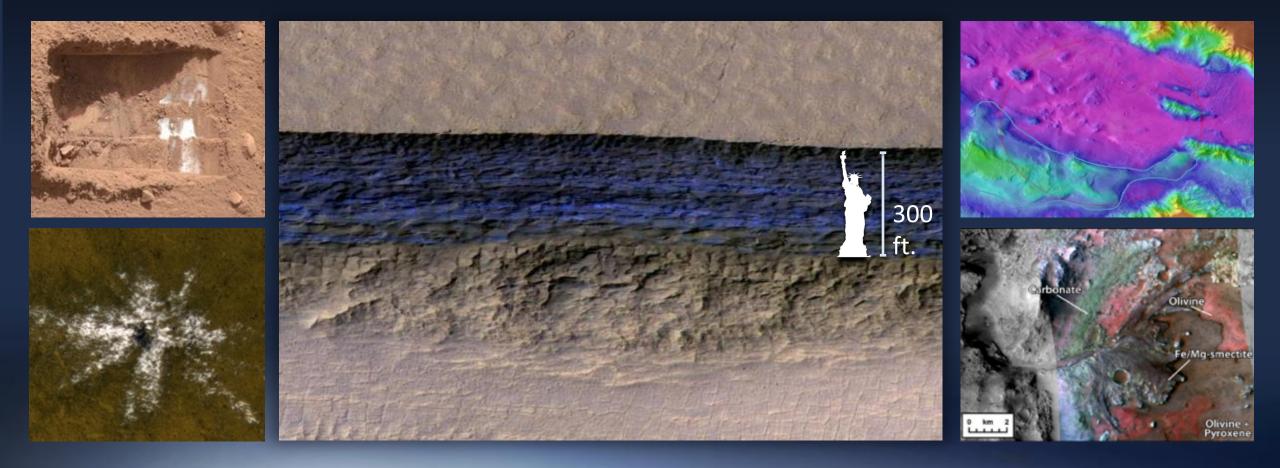
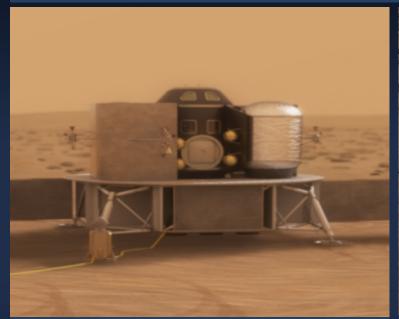

Emerging Reconnaissance Strategies to Enable Human Missions to Mars SpaceNews Webinar

Richard (Rick) Davis SMD Assistant Director for Science & Exploration NASA HQ 🥑 @RedPlanetRick

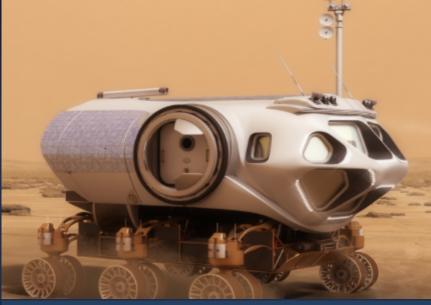
Components for the Round-trip Human Journey


Recon Leads to Selecting A Great Landing Site

MARS


3

Recon Reveals Critical Water Resources



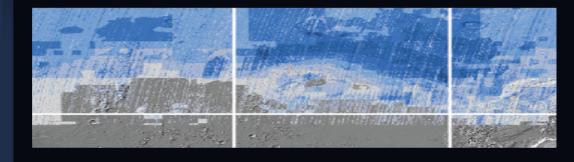
How would a Mars mission use abundant water?

Highest Water Mass Requirements

Propellant for Mars Ascent Vehicle (MAV)

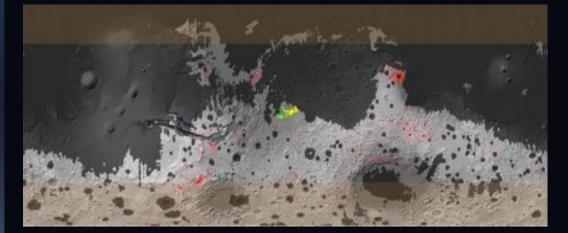
~20 tons for a 4-person crew

MARS


Eventually: Agriculture/Hydroponics

Other major uses:

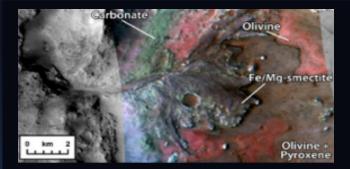
- Crew health, hydration, and hygiene
- Regulating oxygen, pressure, and humidity
- Material for construction and radiation shielding
- Cooling for space suits and equipment


Post-HLS2 Workshop Next Step Accomplishments

- Multiple multi-directorate "next step" activities resulted in significant changes to the knowledge state, with implications for identifying candidate landing sites at the next HLS² workshop (i.e., modified criteria/constraints to test the validity of the EZ concept)
- Several studies commissioned to reduce uncertainties related to water resources, providing some of the most sophisticated understandings of Martian water to date:

GLOBAL WATER-ICE MAP (complete 6/20)

- Integrates all existing relevant data and models
- Seeks to determine available water-ice resources in the mid-latitudes and as far equatorward as possible



GLOBAL HYDRATED MINERALS MAP (2/20 completed 2-year contract that built on a 10-year mapping effort)

- Illustrates that only 30% of Mars can be assessed for the presence of hydrated minerals given dust cover/other mantling, as well as landing-related latitude and elevation constraints
- Documents uncertainties about abundance given measurement challenges
 e.g., data for only first few microns of surface; mantling obscures signature detection in many places, unknown structure of minerals (i.e., hard material or one that crumbles, the latter of which is better for ISRU) etc.

Post-HLS2 Workshop Next Step Accomplishments

	STER POLE	Li Cigi Sulean Trandi Trandi Trandi Cigi Sulean Transi Stroh Cigi Sulean Transi Stroh		
Phase 1: Drill through overburden into top of ice.	Phase 2: Melt into ice. Begin forming water pool.	Phase 3: Steady state operation.		

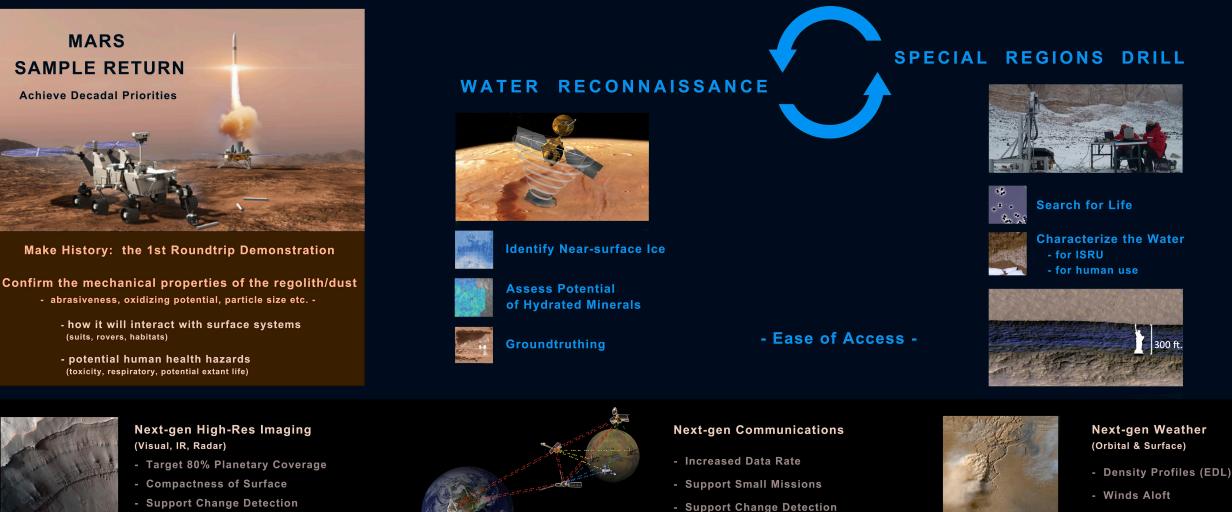
	DISPLAYING LAYERS		CALCULATING	
2 8	BASIC DATA LAYERS USGS Geo Map	BASIC CARTOGRAPHIC LATERS • Graticule (LatilLong)	LatiLong Distance/Area	 ability to retain calculations as a labelipop-up box
1:50	Viking	Nomenclature	Elevation Profile	+ associated ability to
1	- MOC	Scalebar	Sun Angle	emplace scalebars on features within EZ
V. COR	CTX, CTX Global	Compass/North Arrow		
	• TES	WHERE AVAILABLE	MANAGING	
	THEMIS + HIRISE IR (Day/Night)		 Sign in, save annotations, provide read/write & publish permissions (a, autentication, autorization, and public management) 	
	 Thermal Inertia Temperature 	 CRISM 	- Authoring Tool(s)	
	• MOLA	DTMS: HRSC, CTX, & HIRISE	- Deep Link (URL) to Pr	oposed Landing Site(s) on Map
	OMEGA	Co-registered Data	Turn Layers and Anno	tations OffiCn
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- SHARAD	EARTH LAYER/TOGGLE	 Specify Annotations to 	o Specific Layer(s)/Scale/Zoom
(2) ser	· MARSIS	Terrestrial Analogs	- Screenshot	
	Available Water Maps (GRS, SW8MH ₂ O confidence, GSFC; ice-exposing impact oraters etc.)		- Share	
			 Mark areas in EZ for in (e.e., HRISE/CRISMTHE) 	

MARS WATER ISRU PLANNING (M-WIP) STUDY (4/16)

- Highlighted knowledge gaps for systems to access and extract water
- Characterized the potential of water-ice and hydrated-mineral ISRU systems to meet estimated human mission water demands
- First attempt to evaluate potential ISRU systems: mass, power, and operational complexity

TRADE STUDY ON WATER ISRU (7/16)

- Rodriguez Well (Rodwell) approach for water-ice resources determined potentially best approach
 - a hole in the ice slowly expanded by melting and pumping water out
 - most efficient re. power even if the water-ice feedstock is up to 50 km from the main ISRU plant/MAV
 - while significantly higher mass, given the power savings, still the best option
 - operational complexity being studied based on use in Antarctica, modified for the Martian environment


MARS GEOGRAPHIC INFORMATION SYSTEMS (GIS) WORKSHOP (1/17) & COMMUNITY SURVEY (12/19)

- Assessed the state of Mars GIS systems and solicited feedback from the Mars GIS and HLS² communities on tasks to meet landing-site-selection needs
- Created a steering committee to develop detailed task statements based on community input
- Completed extensive community survey that provided data on the community's capabilities, assessed needs, and collected ideas on data tools and displays for EZ characterization and evaluation

Potentially Needed Recon Thrusts

From the International Mars Exploration Working Group

- Greater Access to Surface

Assets (Data & Communications)

- Rock Count/Terrain Roughness

- Slope

 Potential Microbial Transport

Mars is a Human Effort

We Need Ideas

For more information contact us:

http://www.nasa.gov/journeytomars/mars-exploration-zones

JOIN OUR MAIL LIST: NASA-Mars-Exploration-Zones@mail.nasa.gov